Extensions 1→N→G→Q→1 with N=Q8 and Q=C22xC4

Direct product G=NxQ with N=Q8 and Q=C22xC4
dρLabelID
Q8xC22xC4128Q8xC2^2xC4128,2155

Semidirect products G=N:Q with N=Q8 and Q=C22xC4
extensionφ:Q→Out NdρLabelID
Q8:1(C22xC4) = C2xC4xSD16φ: C22xC4/C2xC4C2 ⊆ Out Q864Q8:1(C2^2xC4)128,1669
Q8:2(C22xC4) = C2xSD16:C4φ: C22xC4/C2xC4C2 ⊆ Out Q864Q8:2(C2^2xC4)128,1672
Q8:3(C22xC4) = C4xC8:C22φ: C22xC4/C2xC4C2 ⊆ Out Q832Q8:3(C2^2xC4)128,1676
Q8:4(C22xC4) = C22xQ8:C4φ: C22xC4/C23C2 ⊆ Out Q8128Q8:4(C2^2xC4)128,1623
Q8:5(C22xC4) = C2xC23.36D4φ: C22xC4/C23C2 ⊆ Out Q864Q8:5(C2^2xC4)128,1627
Q8:6(C22xC4) = C22xC4wrC2φ: C22xC4/C23C2 ⊆ Out Q832Q8:6(C2^2xC4)128,1631
Q8:7(C22xC4) = C2xC4xC4oD4φ: trivial image64Q8:7(C2^2xC4)128,2156
Q8:8(C22xC4) = C2xC23.33C23φ: trivial image64Q8:8(C2^2xC4)128,2159
Q8:9(C22xC4) = C4x2+ 1+4φ: trivial image32Q8:9(C2^2xC4)128,2161

Non-split extensions G=N.Q with N=Q8 and Q=C22xC4
extensionφ:Q→Out NdρLabelID
Q8.1(C22xC4) = C2xC4xQ16φ: C22xC4/C2xC4C2 ⊆ Out Q8128Q8.1(C2^2xC4)128,1670
Q8.2(C22xC4) = C4xC4oD8φ: C22xC4/C2xC4C2 ⊆ Out Q864Q8.2(C2^2xC4)128,1671
Q8.3(C22xC4) = C2xQ16:C4φ: C22xC4/C2xC4C2 ⊆ Out Q8128Q8.3(C2^2xC4)128,1673
Q8.4(C22xC4) = C42.383D4φ: C22xC4/C2xC4C2 ⊆ Out Q864Q8.4(C2^2xC4)128,1675
Q8.5(C22xC4) = C4xC8.C22φ: C22xC4/C2xC4C2 ⊆ Out Q864Q8.5(C2^2xC4)128,1677
Q8.6(C22xC4) = C42.275C23φ: C22xC4/C2xC4C2 ⊆ Out Q832Q8.6(C2^2xC4)128,1678
Q8.7(C22xC4) = C42.276C23φ: C22xC4/C2xC4C2 ⊆ Out Q864Q8.7(C2^2xC4)128,1679
Q8.8(C22xC4) = C42.278C23φ: C22xC4/C2xC4C2 ⊆ Out Q832Q8.8(C2^2xC4)128,1681
Q8.9(C22xC4) = C42.279C23φ: C22xC4/C2xC4C2 ⊆ Out Q864Q8.9(C2^2xC4)128,1682
Q8.10(C22xC4) = C42.280C23φ: C22xC4/C2xC4C2 ⊆ Out Q864Q8.10(C2^2xC4)128,1683
Q8.11(C22xC4) = C42.281C23φ: C22xC4/C2xC4C2 ⊆ Out Q864Q8.11(C2^2xC4)128,1684
Q8.12(C22xC4) = C2xC8oD8φ: C22xC4/C2xC4C2 ⊆ Out Q832Q8.12(C2^2xC4)128,1685
Q8.13(C22xC4) = C2xC8.26D4φ: C22xC4/C2xC4C2 ⊆ Out Q832Q8.13(C2^2xC4)128,1686
Q8.14(C22xC4) = C42.283C23φ: C22xC4/C2xC4C2 ⊆ Out Q8324Q8.14(C2^2xC4)128,1687
Q8.15(C22xC4) = M4(2).51D4φ: C22xC4/C2xC4C2 ⊆ Out Q8164Q8.15(C2^2xC4)128,1688
Q8.16(C22xC4) = M4(2)oD8φ: C22xC4/C2xC4C2 ⊆ Out Q8324Q8.16(C2^2xC4)128,1689
Q8.17(C22xC4) = C2xC23.24D4φ: C22xC4/C23C2 ⊆ Out Q864Q8.17(C2^2xC4)128,1624
Q8.18(C22xC4) = C2xC23.38D4φ: C22xC4/C23C2 ⊆ Out Q864Q8.18(C2^2xC4)128,1626
Q8.19(C22xC4) = C24.98D4φ: C22xC4/C23C2 ⊆ Out Q832Q8.19(C2^2xC4)128,1628
Q8.20(C22xC4) = 2+ 1+4:5C4φ: C22xC4/C23C2 ⊆ Out Q832Q8.20(C2^2xC4)128,1629
Q8.21(C22xC4) = 2- 1+4:4C4φ: C22xC4/C23C2 ⊆ Out Q864Q8.21(C2^2xC4)128,1630
Q8.22(C22xC4) = C2xC42:C22φ: C22xC4/C23C2 ⊆ Out Q832Q8.22(C2^2xC4)128,1632
Q8.23(C22xC4) = 2- 1+4:5C4φ: C22xC4/C23C2 ⊆ Out Q8164Q8.23(C2^2xC4)128,1633
Q8.24(C22xC4) = C2xC23.32C23φ: trivial image64Q8.24(C2^2xC4)128,2158
Q8.25(C22xC4) = C22.14C25φ: trivial image32Q8.25(C2^2xC4)128,2160
Q8.26(C22xC4) = C4x2- 1+4φ: trivial image64Q8.26(C2^2xC4)128,2162
Q8.27(C22xC4) = C22xC8oD4φ: trivial image64Q8.27(C2^2xC4)128,2303
Q8.28(C22xC4) = C2xQ8oM4(2)φ: trivial image32Q8.28(C2^2xC4)128,2304
Q8.29(C22xC4) = C4.22C25φ: trivial image324Q8.29(C2^2xC4)128,2305

׿
x
:
Z
F
o
wr
Q
<